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ABSTRACT

This paper studies the existence of periodic solutions for a family of

semilinear wave equations where the restoring force is independent of time,

monotone, and grows at a more rapid rate than linear near infinity. With

*" appropriate technical assumptions it is shown that there is an unbounded

sequence of such free vibrations, i.e. there are solutions of arbitrarily

large amplitude. If the restoring force is independent of x, the
I
. 4 monotonicity assumption can be omitted.
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BGONVICaBR AND 23IITXOM

We consider the xistence of time periodic solutions for a class of

nonlinear wave equations with a restoring force which is independent of

time. Our equations model the motion of a "linear' string with fixed

endpoints and a nonlinear restoring force. Assuming this force depends

monotonically on the displacement and grows at a superlinear" rate near

infinity, we show there is a large class of periods for which there are

arbitrarily large time periodic solutions. For forcing terms which are

independent of x, we can drop the monotonicity assumption.

N'

s i i

r F. ,*A.

+' the responsibility for the wording and views expresede in this descriptive
eumery les with URC, and not with the author of this report.
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LaOE AMITUDI TINE PlRZODIC 8OLUT1ONS Or A SEMILINZAR WhVE EQUATION

Paul H. Rabinowitz*

ITY40DUCTION

Several recent papers establish the existence of time periodic solutions of autonomous

at forced wave equations [1-17). We will focus on the former question here and study

(0.1) Utt- Uxx * f(x,u) - 0 < x < , t e I

together with the boundary end periodicity conditions

(0.2) u(O.t) - 0 - u(I't), t e It

u(x,t + T) - u(x,t), x e [0,11

Our goal is to prove the existence of large amplitude solutions of (0.1)-(0.2)0 Nome

precisely our man result is

2heorm 0.3t Suppose f 9 C(o,1] x *,a) and satisfies

(fl) f(x,C) is strictly monotone increasing in 4, and

(f2 ) there exists m ) 2 and r > 0 such that for I!I • r,

0 < ml(x) U a v f(x'ds 4 0
0

Then for each R > 0 and for each T which is a rational multiple of Z, there exists a

weak solution u of (0.1)-(0.2) with lul  ) R.
:" L

Remark 0.4. (a) By a weak solution of (0.1)-(0.2), we maen a function

a e C((0,1] x 213) satisfying (0.2) and

T 1
(0.5) J J ucItt - O ) + f(x,u)lIdxft - 0

0 0

• "for all smooth # which also satisfy (0.2).
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I
(b) Hypothesis (f2 ) implies there are constants a1 , 2 ) 0 such that

(0.6) (x, C) ) -a •2

for all C e R, i.e. 7 grows at a "superquadratLc* rate as no .. Hence f grows at

a superlinearO rate as I J * - via (f2 ).

(c) if f in Theorem 0.3 is smooth, it is known that any corresponding solution of

(0.1)-(0.2) is also smooth (61, (151.

If f L independent of x, hypothesis (fl) can be eliminateds

Theorem 0.7, if f 6 C(,t) and satisfies (f2), then the conclusion of Theorem 0.3 holds.

The existence of one nontrivial solutioAn of (0.1)-(0.2) has been established by

Bretio-Coron-Uirenberg [51, Chang-Dong-Li (8] and Rabinowitz [15). These authors require

and (f2) or somewhat weaker conditions together with some further assumption(s) on f at

C- 0. in [) and (8], the authors use a Leqendre transformation to aid in converting the

problem to & simpler one. Such an approach perhaps can be used here in the setting of

Theorem 0.3. (As a first step one can produce a time independent solution of (0.1)-(0.2)

and then via a change of variables further assume f(x,0) - 0). However the Legendre

transformation requires f1 ) and therefore it will not work for the setting of Theorem

0.7. We use an approach that works for both Theorems 0.3 and 0.71 in fact after same

observations the proof of the latter result is a simplification of the proof of the former.

Theorem 0.3 was largely motivated by an analogous result for Hamiltonian systems of

ordinary differential equations

(0.8) 1 - 3*(z)

under solely an assumption like (f2 ) (18). To obtain the result of [181 for (0.8), rather

explicit estimates were required for a comparison problem and such estimates do not seem to

be available in the setting of (0.1)-(0.2). Therefore we have had to use a different

argument which obviates the comparison problem and which can be used to provide a new and

smewhat simpler proof of the main result of [18). Another difference between (0.8) and

(0.1)-(0.2) is that solutions of (0.8) lie on surfaces n(s) I constant - c which for

large c and "superquadraticm R bound compact starshaped neighborhoods of 0 in U2n.

-2-
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solutions of (0.1)-(0.2) also satisfy a conservation law but of a much weaker sort and even

if a solution is of large amplitude, it must pass through 0 because of (0.2).

A aJor difficulty in treating (0.1)-(0.2) stems from the fact that the linear problem

109) Ovvtt - v = 0

where v also satisfies (0.2) and T is rationally related to I has an infinite

dimensional space of solutions, W. The monotonicity assmption (fi) i used to estimate

the cmponent in N of a solution u of (0.1)-(0.2). QaLte recently Coron (71 has noted

that if one restricts 0 to an appropriate subclass a of functions satisfying (0.2),

the n 8 - (0). ence If f a 8 + 8 one can do without (fi). Zn fact using this

observation and techniques from (181, Coron proved a result like Theorem 0.7 under the

further hypotheses of polynomial growth for f and f(O) - 0. our proof of Theorem 0.7

also relies on his observation. If T is not rationally related to Its - (0) but one

encounters Small divisor problems In trying to invert 0. It is an interesting open

question as to how to treat (0.1)-(0.2) for this case.

An outline of this paper is as follows* in fi, (0.1) will he replaced by a modified

problem, roughly as in (151. solutions of the modified problem will be characterised as

critical points of a variational problem. In 12 the existence of such critical points will

be established and some qualitative properties of the critical values will he studied.

Suitable estimates for the critical points will be obtained in 13 and combined with the

results of 12 to solve first the modified problem and then the original one In the setting

of Theorem 0.3 via a limit argament. kstly in 14 we prove 1heorem 0.7.

~ -3-
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F . OIIO, OF mM aMzvODu Pmo0BJu

For definiteness In what follows, we set A I V and T - 2w. The qsneral case is

treated similarly. Lot Q 1 [0,1) x (0,20] and JQJ 5 2w2.

Roughly speaking, solutions of (0.1)-(0.2) are obtained am critical points of the

corresponding functionals

-(11) I(U) " "(u -s.%)- F(xu)]dxdt

A natural space in which to treat (1.1) is suggested by the quadratic wave form in (1.1).

Any smooth function u satisfying (0.2) ham a Fourier expansion of the forms

-ikt(1.2) u a i jx 0 ak k*j1 k-o . AJo-k 5
J k

Lot 3 denote the Hilbert space obtained an the closure of the met of such functions under

lu 2 5 JAL 1k (I2-
j 2j + 1)1a k1

2

Further set

S- {u e Slajk - 0 for Ikl I J) ,! ;'-(ueulna -0 for- Iki ?jJ,

and Z° - (u eSlajk = 0 for } 0 lkl)

Then 3 , 3 30 are cplementary suzbspaces of ; on which the wave form is positive

definite, negative definite, and nl. indeed if v e So io smooth, v satisfies

(0.9) and (0.2) and it is easy to see there In a p L2 (S 1) such that

v(x,t) - p(x + t) - p(x - t). it is also not difficult to verify that

(1.3) luL C %lul;

for all u 3 ;* 0 and a e [2,-) where a is a constant depending only on a [9).

Moreover the injection ; 0 Z" - L is compact.

As was noted in (0.6). F(xC) grow more rapidly than quadratically as m6I * e

Since there is no upper restriction on this rate of growth, 1(u) need not be defined on

-4-

a..

' ~~~~~~~~~~~. . . .. . . . . . . ....... .•.--..--.......-...--..- .-... C-.-/-."_.-.'-

,% -,' 4.'- ' *,-" . --'. " .'?-'. "- .' ."., ..'".. . . . . . .



all of B. This Is one obstacle to finding critical points of I in a direct fashion. A

second difficulty is that in order to apply minimax methods to 1, one generally needs

Ssam ompactness for I an embodied in the Palais-Smale condition and that seems to be

lacking relative to 3'. Hence vs vill modify the problem, both in terms of I and 3,

in the spirit of 1151 and [19).

Note that any u e canbewritten as u - v + w where v e ZO and w e ; .

Set V s W1 V2(9), ;l *3^, and Z -3 N . t is easy to see that since the

elements of 9 are essentially functions of one variable, v e N implies v is

continuous. oreover if v e 3,

Svdxdt - 2 dXdt f v2 ds t
Q 9 Q Q Q

and it v •U,

pil .~ Ik2 I tllaSlkI i I_ lak
jk J1 kl I& l kl

* Ius an norm in 8 w can take

(1.4) *ul' 'l2 2  2 2 4 jk 2 _ 1211a&k 2

where u - v + v has an expansion as in (1.2). It is easy to see that N and N" are

orthogonal subepaces of 3 under the inner product associated with (1.4).

With r as in (f2 ), let K ) r and let fi(xV) be a function continuous in x,,K

and satisfying (f), (f 2 ) with P replaced by ;- independently of K and such that

9,C) - f(xC) for Il 4 X and fk(x,) - for ICI ) a(R). (Note that this

diLffes frorm the truncation employed in (11]). Then the primitive P. of fK satisfies

(0.6) with a&, 2  replaced by a1 ,,2 independent of K. & straightforward computation

shows that such an flt is given by

, -5-
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(1.S) fRxC) = fx, C). 0 4 C 4K

- f(x3) p(C- x) $  (C- ), K C C X +

+ f(x,) (-K) 3 + X + 1 4

(K + I - WMA) + P*C - K)3+ C C +I

with the analogous definition for C < 0 provided that we take p - p(K) appropriately

large compared to f(xl), Z appropriately large compared to p, and e.g.

min( , 2), p and K depending continuously on X.

Now finally fix 0 > 0 and for u - v + v e 9 1N N , define

(1.6) 19 u -
2  2 2  

- I Cx

Q i,(t - x - wt KP udd

Then I(0,Klu) e C (2,R) (See (191). We will find solution. of (0.1)-(0.2) by first

obtaining critical points of VI.,z* ). Thee critical points are weak solutions of

(1.7) On -Syt + f( x ' u) " 0

together with (0.2). With the aid of appropriate estimates which are independent of

and K for these critical points and corresponding critical values, we can choose x

sufficiently large so that lul. 4 K for a solution u. Therefore f,(x,u) - f(x,u) and
j L

letting 0 . 0 yields a solution of (0.1)-(0.2) of the desired typo.

-6-
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12. UOLUIOU OF I IVZEZED PRM=

We vil pow that for each 0 , K • r, Z(S,CI*) possese an unbounded sequence

' of critical values and associated critical points. As a first step in this direction, we

verify that the functional 1(0,zt*) satisfies an igortant compactness coadition. A

functional Ye C14 (2,R) satisfies the Valais-Smale condition (PS) if any sequence (a.)

in 3 along which

(2.1) T(u) is uniformly bounded end f$(u) + 0

possesse a convergent subsequence. Nere 11 denotes the Prechet derivative of T.

proci tsion 2.2s 1(0,1s*) satisfies (PS).

Proof I Let It re e denotes respectively the orthogonal projectors of a onto

3 and U. The form of and compact ibdding of U in L(Q) imply

* (2.3) e', (NKu)u -, + iP'(u)u

* 9 + PS8(u)u• "1'(..K,,)u - -b; + PeS(u)u

uvr u v+w +-w S3N03; +0o , here 8(u) Icomact. (Ueeo.g.theanalogous

. situation in (191). Thus If we show aW sequence (m) satisfying (2.1) is bounded, (2.1)

and the forn of (2.2) Imply (%) possesses a convergent subsequence.

Suppose therefore that (u) satisfies (2.1). For large m we haves

.4 (2.4) IZ'S,K,ua)$I 4 6l4l
where g is free for ac. For notational convenience we drop the subscript a on u. By

(2.1), (1.6), and (f2), there is a onestant N > 0 such that

4 2 2

*f f(zm)s - F1r(x~u) dxt )la3 IJ 1x(z~u)u &dt - a%
.'..

along our q- In (2.5) the constants a3  and a4 are Independent of a. The form

of fr and (2.5) imply

* -4-* . A 4. -. *-. - .. ...•
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(2.6) M+-lul ) alug -6 a
2 Ia 5 u 6  6Lb

where as, % are independent of a. Choosing successively * = v - PuO = w P ul

*iw-in'u in (2.4) shows

(2.7) 1i1 93lvl2 ( f lf1 (I9,u)IV dxdt + €lvh <a8/1l + lUlS6 )1v1L6 + clvi

- (2.7)

Iv
t 2 4 a7 (1 + lulS.)w 

.6

L6 
L6

where a7  depends on X but not A on 0. Letting c mAin(0,1) and adding the

inequalities in (2.7) yields

(2.8) lug 4 81 + lu S l8V(1 + I I +6 6 6+ 3ul
L L L L

But then by (2.6), (1.3) and its analogue for W, we have

(2.9) 1ll 2 4 9 (1 + lul/T)lul + 31ul

where a9  is independent of a. This inequality implies (um) is bounded in Z and the

proof is complete.

in order to obtain critical points for "(9.1,.). we will use a variation of known

ideas (ee e.g. [201). we define a group (11) action on 3 via

g*o(X,t) A utx,t + 8)

for u e Z and 6 e (0,2w). Note that

(2.10) Z(0,xlgou) - I(9.KIu)

for all u e and 6 e (o,2w) i.e. I(S,Kl*) is invariant under this act'on. Let

G = (go81 e (0,2w)). Note that G possesses a fixed point set,

Fix (u e Ilgu u for all g e ()

It is clear that

(2.11) Fix G span(sin xIlX - C N} Cz

L"mmma 2.121 For each 0 > 0, K r, and u e Fix G,

I(8K~u (7 21Q1

,,-',, ... .. ... ..,.......+... .. .,+...... ......... , ...+. ++ .• . + . . . .. .. . . +. + ..,.. + , +.- .. ..
._ ' ,",. %, . 'l_' , +- o. .- o ' . -. - .. -. . . . . . . . . . . . . . ..- -



-- 7- -7 .i -

Prooft By 1.4), we can write

(,.12.13) i(9~u) = (w +12 - nw1 2 - OUv12 - FK(x,u)dxdt

Q

Using (0.6) for Fx ,  (2.13) implies the estimate since Fix G C C.

Remark 2.14s Since by Lemma 2.12 z(O,K o) is bounded from above on Fix G and the

sequence a (0,K) of critical values of I(BK,*) we will produce later - as j + -,

it follows that any critical point corresponding to c (0,K) must depend explicitly on

t whenever c (6.0) > &QI and this will be the case for all but finitely many values

of

Let E denote the collection of subsets of 3 which are invariant under G, i.e.

A"e E if gu eA for all u eA and g eG. For example the subspaces +, E', N of

3 are invariant sets as is

(2.15) V = N 3 97 0 span{sin ix *in kt, sin jx cos ktO 4 Jk 4 m and k ) k}

If A,B e E and A + B* # is said to be equivriant with respect to G if

*(gu) - g#(u) for all g e G and u e A. Let Ba denote the closed ball of radius a

about 0 in Z. We define a family Qj of mappings as follows

(2.16) G" {h e CVj )jh satisfies (y 1 ) - (14)1

where

(Y1  h is equivariant

(r2 ) h(u) - u if u e Fix G

( 3) There is an r - r(h) such that h(u) - u if u e V \S
j r(h)

+ - ICr() For u - v + w + w e Vdt (PO 0 P-)h(u) n (u)v + (u)w" + (u) where

a ,- 6 c(VY(e1,a]), 1 < a depends on h, and * is compact.

Remark 2.17: Note that Gj is independent of 0 and K and h(u) - u e G for all

mA jeN so G j*.

" ow we can define a sequence of minimax values of I(BeK,*). Set

(2.18) c ( eK) 3 inf sup I(BX,h(u)), j e V
heG ueV

-9-
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Proosition 2.19t For each j e N, c J(O,k) is monotone nonincreasing in 0 for fixed

K and is continuous in K for fixed 0.

Proof: The only 0 term in I(,,) is

-~f 
2~xd

sup V K~h~)) 4sup I(O,K~h(u))
V ~ V

fo ahheG Cosqety 0K c (01K) if 0 ), 0.

Topoethe continuity of cj with respect to K frfixed 0, note that by our

choce f xA +F-(A)uniorly n [0,u] xaas K K Therefore for any

C >0,threexists 6(e,K) > 0 such that IX - KIC implies

IKx -KX C for all (x, C) e (0, W1 x R. Hence I ( O,K,u) - I(B,i,u) 1 1 Q I

for all u e Z from which it easily follows that Ic(1o-c i(BK)l I C 1Q15 if

IK I (8

Remark 2.20: If one uses the truncation for f as given in (15), it is not evident

whether c (0,K) depends continuously on K for fixed 0.

The definition of Vj and imply that

(2.21) c J(0,K) )sup I(B,K,u) I l(O,K)
Fix G

It is not difficult to see that v(B,K) is a critical value of I(B,K.*) corresponding to

a time independent solution of (0.1)-(0.2). We will show the numbers (c (B.K))ji form

an unbounded sequence of critical values of Z(B,K.').

Proposition 2.22: For each 0 > 0, K >r, c (0,K) + - as J + -

Proof: The form of FK implies there exists an AK 0 such that

(2.23) lKx) i &iI6

4F for all (x,g) e [0,W) x K. Therefore

(2.24) I(B,K,u) ~ ~(~-u v) Au]dt-IQ

Q



for all u e X. In particular for u 6 as nv "

(2.25) I0xu 2 101

Q

J-l

i
If u eV i.1

Sa k i ktU & + I.siln Ax a

A-I k- w
Ikl>At, Ikl+9":

Therefore,

(2.26) 1 2 "j I (k 2 _ lA ki2 ) 1 3 aa2 - 2 
21,k 4 Ik L

The Hlder inequality, (2.26), and (1.3) imply

6' 3_33/2 3..6
(2.27) lul6 4 lu13lu 10 0 1 a 3 .

L6  L L

Substituting (2.27) in (2.25) yields
I(OlXu) ) 2 _.-3/2 6 Q1

3- a3/-1 1 41-4

for u ea rivl where a 3 . choosing P 0 (K) Ij 3 /9 (4a -1/4 shows
'%12

(2.28) 1(5,K,u) e . 11

for such u. Suppose for the moment that

(2.29) h(V,) n alsn v I

for all h e G * Then by (2.28)-(2.29), for any h e Gil

sup I(eKh(u)) A inf ,

P -

and consequently,

c 1 S,, ) ) 2 p (K) - 11

since P (K) * as j P U, Proposition 2.22 then follows.

It remains to verify (2.29). If r(h) 4 pil (2.29) is trivial via (73). Thus we

can assume r(h) > pi. It suffices to prove that

f-11



'P.

(2.30) h(B r ) Vi 09aB 
n  1

r(h) j J .

This follows as in analogous situations ins LIS], [201. Indeed if Fix G were finite

dimensional, (2.30) follows immediately from Theorem 3.9 of [201 or Corollary 1.25 of

(18). We can either introduce the topological index theory of [20] and repeat the

arguments of [18] or [20) slightly modified since Fix G is infinite dimensional or more

simply use e.g. Corollary 1.25 of (181 and an approximation argument. Pursuing the latter

course, let

V2  span(sin ex I 1 4 a 4 £1 c Fix G
ono + 0 .*Mi .G

and let P denote the orthogonal projector of B onto z 630 [((FixG)e wt].

Then appropriately identifying our situation with that of [18], Corollary 1.25 of [18]

implies

(2.31) P.h(nr(h) ;vj) rasp n V l V t

for all I e3. Thus there exists u,=w + + v, + Vt-e (3h F Pe) such that

ph(ujt) 6 31p n V -1 Sine Zr(h) n Vj is closed and convex, a subsequence of ut

converges weakly to u E w + v + w- e B r(u) A V j* Since P+V is finite dimensional, we

can assume wt converges strongly to w+ . By (Y4 ) and our choice of ux,

(2.32)

1P l:Z:t): a :(u t)w I +P Pt~( ON I
The properties of % 6 , and * now allow us to conclude from (2.32) that vi and w

also converge (along a subsequence to v, W- respectively. Hence u e 3B n V and
r(h) j

h(u) e alp A) V,_ 1 , i.e. (2.30) holds.
j

One final preliminary is required to show that the numbers ca (0,K) are critical

values of I( ,*K*). L t K " (u e 311(0,K,u) - c and I'(B,Ku) - 0) and

A - (u e ZI(S,K,u) 4 a).

Proposition 2.33: For each c e R, 1 > 0, and invariant neighborhood 0 of Kce there

exists £ 6 (0,i) and vi e C((0,1] x 3,Z) such that

,2 4J -12-
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1 1 MIo) is equivariant

20 i(1,u) u If I(,K.ou) (c - Zc + i]

30 MI(1,u) satisfies (Y4 )

40 inll,A \O) C A
c+6 c-C

S. if K (,, il ) C Ac c

Proof: Since I(O, o.. ) e CI (1,R) and satisfies (PS) via Proposition 2.2, all assertions

save 30 are standard. See e.g. 121). As in (1S, 30 follows since r(t,u) is the

solution of an ordinary differential equation of the form

(2.34) an -o(i)(Yl0t) + P(i))

Wl(O,u) - u

where a is a scalar function with 0 4 0 C 1, P is compact,

Y (u) a 1 (I+12 _ lv1 2  
- Ivl 2

+ -and I )is the Frechet derivative of YO. Letting nt-i + n + * and projecting

(2.34) on 3', N yields

- -OW1)(-i + PP(1))

(2.3S) 
m

-(o,u) - P'u - w-

and

d-0Wq(-Oq* + POPOWi
(2.36)-

n*(0,u) - v

Integrating (2.35) and (2.36) shows n has the form (Y4).

Now finally we can prove

Pronosition 2.37: For each 0 ) 0, K ) r, 1(MR,1.) possesses an unbounded sequence of

critical values.

Proofs If c ( 6) - V(K), a Qj(0,K) is a critical value of 1(0.1,*) by a previous

remark. Thus suppose cj(0,1K) ) v(O,]). We argue In a standard fashion. if c j (6K) is

not a critical value of lt - (c- ). Then there Is an c 0 and
21

i S C((0,13 x 3,9) as in Proposition 2.33. Choose h e Q such that

-13-



(2.38) sup V(lArhal) 4 a +
vi

Let h I nil,h). Clearly h e C(Viu). By 10 of Proposition 2.33 and I h satisfies

11). By 1Y21), 20 of Proposition 2.33, and our choic, of , h satisfies 12 By

(14) and 30 of Proposition 2.33, h satisfies (74). Assume for the moment that

*also satisfies (73) Then e r. and
3I

- (2.39) sup I(B,hlu )) )0 a
V.

But by (2.38) and So of Proposition 2.33,

*."" (2.40) sup X(isKh(u)) 1C - 9

contrary to the definition of o (K). Thus cj(0,K) is a critical value of X( BK,.1

provided that h satisfies (y ). Since h satisfies (Y3), h(u) - u for
3

U e v\8 For such u, rting u + W, + w have
* ~ ~ ~ ~ ~r(h) -Wiig ehv

(2.41) Zl(,,h(u)) _,I 2I nv*12 - 1v- 2
- OivE2) - PK(x,u)dedt

by (0.6) for F.,

(2.42) Z(SKh(u)) 4 I +12 -2 .II2 -

2l f I 1  ult~dxt + Ig1Q
Q

4.1 +12 -V,2 OEvI 2  
t2 " ,,, , a3,I, jI dxdtoJ2 + 2 1Q

Q

Since > ) 2 and +n V is only finit, dimensional, it is es to sa from (2.42) that

I(O,Kh(u)) * -a uniformly as ll NO in V1  and in particular is les than

*c 1jliII - s for large u In Vj. Hance for such u, hul - u via 20 of Proposition

2.33 and (y3) is satisfied.

Lastly for fixed 0 and K, c1 (0,K) forms an unbounded sequence by proposition
.9

2.21.

-14-
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Corollary 2.43 Lot u (0,M) be a critical point of Z1(0,6*. ) such that

X( t.u - c (sox). 2T e ( ,K)I_ as
j i L

Proofs Since for u - u3 (sx),

X,(Sr.u)u -O-f (u2 - u - W) - '''&~udt

I

(2o44) c M.) - jfr(3c,U)U - Vr(Xu) ]dxdt
Q

This if uj(6.) were bounded in L . (2.44) shove @3(0,M) would be a bounded sequence,

contrary to Proposition 2.37.

Remark 2.45: Note that It hae not yet been esetabliehe" that 3u3(SI,)U I * for any

3. This will be done In 13.

mesrk 2.46. A more delicate existence argumet bused an the Index theory of (201 can be

use to obtain a sequence of critical values of II 6,1*) as vell as a multiplicity

statement for degenerate critical values as in (161 and 1201.

2

-1
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13. TuE PYMU OF TWORD 0.3

In this section the regularity of the critical points of I(p*K,*) vii be studied.

It will be shown that u1 (0,K) is a weak solution of (1.6), (0.2). In the process

estimates for Iu (S,)l L independent of S and X vil be obtained. This vill aid us

in finding large amplitude weak solutions of (0.1)-(0.2) via a limit argument. In what

follows we always assume 0 , 0 and x > r.

Proosition 3.1: There exists a constant Nj independent of 0 and K such that

c i(SIK) 4( NJ

Proofs since h(u) - u e Gi by (2.18) and (2.42),

(3.2) c (0,1) 4 sup I(OeK,U) 4
V i

sup 2 Is lvI 9v1) - a3 (f (w1 2 + Iv'm2+ Ivl .lxdt)*' 2 +-a 2 lQI

where a3 is independent of 0 and K. The form of the right bound side of (3.2) shows

1 *u 2  2 3( u t)1V'2
(3.3) c1 (0,K) 4 aIQI + su Iu . Udd

since V 1;+  is finite dimensional and ) 2, the quadratic term on the right handI' .
side of (3.3) dominates near 0 and the term near infinity. Bence the supremum is

positive and Is achieved at @me u e V n i . Therefore

(3.4) aII 1 12 •131; ir, 2 2 2 'u2

L L

Consequently

2

and by (3.3),

(3.5) c(,r) 4 2l + 1 2

-16-
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1a 3).*lL ]If u is a critical point of (SK.,),

(3)L a4
I1(S ' u)I a as

wbore the comntants 4, aS  are independent of a and K.

Proofs If a is a critical point of I(B.K.),

(3.) 1(I9.Ku)* - 0

for all * 6 3. Choosing G n a gives

(3.9) IKA) - I(O.K.V)u -I( f (xu) - '(x~u 1 jidif

NOW applying (Y yields an L1 bound for u al(K*U) frOM which (3.7) easily follow.

PrommOitio 3.101 If u - v vw g x a m W1 is a ritical point of UBK.*), thea

v * @ C n2  and v•C I n ul.

Proas Since u S 3, • wl '-2 n v and therefore v is continueos. The form of EK and

(1.3) Sply f1 (.,u) g L2 for alla a (,#_). Chooing N.w In (3.0) ahove

(3.11) J (Vtb f(Xu)*)dt S 0
9

War #$ego let

0S(m.t) - 6"ll$(3.t + 6) - ON't)

and lot pn denote the orthognal projeotor of x onto

epan(ain x *in At,tin Ax oe It 1 4 4 £ a)

Taking *a (v I - ((PnV) in (3.11) yields

4 2

(3.12) ofl(P-v) 12 ' IflK (*'U) 6L6(nv) 1 2

Ltting 6 * 0 in (3.12) shove

(3.13) i n)~'att L2 2

Nov letting n shows a W,2 . Thus by (3.11), 9u O t" ff(xv)6 L 2 % %J1 . since

• •a implies 'tt on, f ;P - PL(ou) wbhere P F +P. y a regularity

Ireult ((221, (61, or (151) for solutions of (0.2) and

-17-
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v t io mtinuous. A reUpsetati.on result for solutions of (3.11), ((.M) of 1151), them

-b1ys v@C 2  
and

(3.14) SlrlI 4 41(6.u) I

f for a - 1 and -. neae by (223, (61, or [151 and (3.14), v* C1 and

IV 3.,1) , 4 Ya,. + f1, .(*..) L, ,4 %af1 I.. ), •

L L °  I.

(3.1e " vi 4 %U-ov * f ( .u) 1M %1Yf( s)* L

Next vevill obtain further 9 and R independent bounds for v and v.

Proposition 3.17: hoere is a onstant N independet of $ and X su-h that If

u (S.K) N Vj (6,K) + v j (0,R) a N 0 v I is a critical point of I(,.,*) corresponding to

.o ,K), then

IV IjlJK)l e+ SY(S,I)lO,IN .

I. I

- Proofs Proposition 3.1, Zoa 3.6, and (3.15) give an L bound for v3 (A.R) independent

of I and R. Loma 3.7 of 1151 then provids the most deoate step# am L bound for

v(0,K) independent of 0 and R. Lastly (3.16) yields the 1 '  bound for v, (K).

.!-ark 3.16, Inequalities (3.7) and (3.15) and the proof of emm 3.7 of (15) show there

exists a monotone increasing function suh that

, (3.19) Euj (0,M)1 j(0,M) 4 #() aX

for all j • II.

SPromoeition 3.20# For fixed j and K the functions v (I') form an equiontio

* faily In C(Q) A X.

Proofs This Is a restatement of Lamme 3.29 of (15) wereo we got hat in our setting is a

uniform modulus of continuity for the functions v (MI).

with the aid of t prelimnaries vs cam now give the

-IS
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Proof of Ihorm 0.3: First we vii prodae a solution u of (1.7), (0.2) with

R < lul,4. thuafix 0>0, R) r, and 1).3. got
LI

(3 .21 ) # 5 1 + Q a m 1 M ) - M V* (.21 fl) 114 101 ""a I"f(xI) - V(x,.)l

if u i u(6,) is a weak solution of (1.7), (0.2) with Iu1 a 1 R < X , (3.9) shov that
L

(3.22) II($o11U)i " 1 ju fMxOu) - F(x.u) ]aetl 4 t() - I < (u)

Define M - i(R,$*(9())). by lroeition 2.37, (c m(,))l is an unbounded sapence

of critical values of 110o1..). Therefore we can choose 3 so that a 9.)) ().

With 3 now fixed, consider a j (0,K) for R6 4 K.1 11 UT where 13 as sf &ned In

:3 3

(3.19).* (Por future referene" note that 3 and therefore I~ depe on 0). $LSine

a (0,) is contimom In T3 by Proposition 2.20, either there is a 6 41 such that

a MR) -fli) or Utz1) (). Za the former case, by (3.19)

(3.23) u3(S,1)l_ 4 #(o(601)) - #(#(I)) -4 - 1K

so u3 (9.1) is a weak solution of the untrunoated equao
(3.24) Ou - O f (xu)mS

together with (0.2). in the latter came, (3.19) IpILes u j(SIR) matisLes (3.24) and

(0. 2). Thus in either oas there exists Xa 10() 9 Tj such that luj (0,M)I K andI.

u (6.1) is a week solution of (3.24)p (0.2). UMreover a (8,K) b (6) 1) (3.22) and

(3.21) Imply that Iu3 (6.K ) a.

It reins to find a solution of (I.)-(0.2). i.e. a solution of the above type with

" - 0. he wee noted abovej depends on 0, i.e. - I ($) s d hence possibly

as* . a 6.0. if m owe my not be able to ontrol u(000(s)) an a .0. To

got around this Pential difficulty, we will get a 0 Independent estimate for 3.

To begin we apply the above argaent with 1.*I Now Ila the 3 and therefore I 3

so determined and consider a (all) for 96a (0,111 and K6 1 j Dy Prpittion 2.20,
jI

9 1 Implies a3(6.1) ba 1(1,1). tum a 3 lR) o3(ll,) ) (3). ince KI is now
.- 19-
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independent of 0, our earlier argument yields K -~ 0() e 1, for each 0 e (0, 1.

Mooning a sequenoe On + 0, we obtain a sequence of weak solutions u (9 K(Oa)) of

*(3.24), (0.2) with R < Eu (OU.K*(B ))I K($ ) 4 D y Propositions 3.17 and 3.20 the

*functions w (S .K(S )) are uniformly bounded in C (Q) and the functions

v (0 AV( ) are uniformly bounded and equicontinuous in C(Q). Thus we can pass to a

limit in C(Q) to got a weak solution uj of (0.1)-(0.2) with R (Hu (U1 4K *The

proof of "teores 0.3 is complete.

-'20
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14. O WOW OF !1U0 0.7

The proof of Theorem 0.7 parallels that of Theorem 0.3 but is much simpler. Therefore

w we will be rather sketchy bore. AgAin We take I - w and T - 2w. Consider all functions

which satisfy (0.2) and

(4.1) (1) u(xt + W) - u(x,t)

(ii) u(W - x~t) - u(x,t)

Substituting (4.1) (1) into (1.2) shows ajk - 0 if k is odd. Similarly (4.1) (1i) and

(1.2) Imply &jk - 0 If 5 io even. Thus j must be odd and k even in (1.2) for (4.1)

(i), (Ii) to hold. et 1  denote the subepace of z of such functions. As was noted by

-ora i9), go n V 1 (0) since ai5 = 0.

Let 3 n Pz are orthogonal subspaces of 31.

Moreover 3*are Invariant under G as is

J.z 7m 0 span(sin jx sin kt,in 5x oo kt I

0 @ J. k 4 m, J 4 k, J odd and k even)

Vow the arguments of 51-2 with a replaced by 21 and Vj by X, show IZO,K,-) has

an unbounded sequn e of critical points ul(0aK) with oorresponding critical values

oj(0,K) depending Cetinuously on K. It remins to show that for appropriate J, K,

uj(0,K) is a weak solution of 40.1)-(0.2) with R 4 u j(0 OR)E (K.

Not that If g satisfies (4.1) and Ow - go then e.g. via Fourier expansion,

V a 81 " Zn particular if ; - -fX(U) With u • 211 then fK(u) satisfies (4.1).

Therefore the arguments of 13 suitably simplified carry over to the present case and the

proof is completed as earlier.

Newark 4.21 the above argument works equally wall if f also depends on x provided that

f(s,-) M ,00.

* -21-
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